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High-index, rutile-derived, crystallographic shear (CS) structures occui)y the composition range (Ti, 
Cr)Ox, 1-875 < x < 1.93. The CS plane rotates continuously from (121), to (132), about the [l]'l]r zone 
axis, producing a continuous series of intermediate CS planes with (hkl)r=p. (121)r+q. (011),. In the 
reciprocal lattice a fine net of superstructure reflexions rotates continuously relative to a coarse net of 
rutile subcell reflexions. Analogous reciprocal-lattice behaviour should be a general crystallographic 
phenomena and may appear in any system where superstructures occur. It is shown how the intermediate 
diffraction patterns may be indexed by deriving a single transformation matrix relating the unit cells of the 
high-index superstructures to that of the basic subcell. 

Introduction 

Ordered crystallographic shear (CS) structures 
M,O2,_1, 4_< n < 9, with M =Ti  or (Ti,Cr), were dis- 
covered by powder and single-crystal X-ray diffraction 
methods (Andersson & Jahnberg, 1963; Andersson, 
1960). They may be formally derived from ruffle by the 
regular action of the displacement vector ½-[0T 1 ]* across 
(121)r planes. Electron microscopy and diffraction tech- 
niques established the existence of ordered CS struc- 
tures Ti,O2,_l, 16<n < 36 with the same displacement 
vector acting across (132)r planes (Bursill, Hyde, Tera- 
saki & Watanabe, 1969; Bursill & Hyde, 1970, 1971). 
Recent electron-diffraction work showed the existence 
of at least 50 structures in the intermediate composi- 
tion range MOx, 1.875 < x _< 1.93 for M = Ti and (Ti, Cr) 
(Bursill, Hyde & Philp, 1971; Philp & Bursill, 1974). 
The CS plane rotates continuously from (132)r to 
(121), about the [1T1]r zone axis, producing a con- 
tinuous series of high-index intermediate CS planes 
with 

(hkl),=p. (121)r+q. (011),, 

where p andq are integers. 
In the reciprocal lattice a fine net of superstructure 

reflexions rota,tes continuously relative to a coarse net 
of rutile subcell reflexions (see Fig. 4 in Bursill et al., 
1971). The reflexions strong enough to be observed 
by X-ray diffraction are doublets and triplets centred 
approximately at the subcell positions. In the swing- 
ing CS plane region the X-ray powder lines show only 
small shifts. The existence of a large number of or- 
dered structures with variable CS plane is therefore 

concealed and it could be assumed that the composi- 
tion range contains only one wide-range nonstoichio- 
metric phase. Florke & Lee (1970) assumed instead that 
the (121)r family continued up to n =  17 and blamed 
poor resolution for the apparently continuous line 
shifts. 

We believe that this type of reciprocal-lattice be- 
haviour is a general crystallographic phenomenon and 
will be revealed in numerous systems where superstruc- 
tures occur. To detect and distinguish high-index struc- 
tures it is essential that single-crystal patterns be used. 
These must be very carefully oriented into specific 
zones. Even electron-diffraction patterns (which record 
a much higher proportion of the allowed reflexions 
than do X-ray patterns) are fully extended to reveal the 
subtle changes that occur. 

It is shown below how the intermediate diffraction 
patterns may be indexed by deriving a single transfor- 
mation matrix relating the unit cells of the high-index 
structures to the rutile unit cell. 

Experimental results 

82 [1]'l]r zone-axis diffraction patterns were obtained 
in the course of a phase-analysis study of rutile plus O 
to 25 tool.% CrO1.5 (Philp, 1972; Philp & Bursill, 
1974). Details of the preparation methods, composition 
calculations and measurements of CS plane spacing 
(Dsp) and orientation (p' =p/q) are given in these refer- 
ences. D~p may be measured to approximately 1% ac- 
curacy using an internal standard. The accuracy of p' 
varies from 1 to 6 % for p'  = 1 to 10. Four typical dif- 
fraction patterns are shown in Fig. 1. Of the 82 diffrac- 
tion patterns obtained, 50 were measurably different. 

* Present address: Defence Standards Laboratories, P.O. 
Box 50, Ascot Vale, 3032 Australia. 

i" Subscript r refers to indices based on the rutile cell or sub- 
cell. 

Swinging CS plane structures 

It is well known that the oxygen array in rutile may be 
idealized to h.c.p, by flattening the puckered (100)r 
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(a) (b) 

(c) (d) 

Fig. 1. Four indexed [II1], zone axis diffraction patterns. ( a ) p = 5 ,  q=2,  n=68, origin shifted by g(003), plate number 23177. 
(b) p =  13, q = 4 ,  n =  149, plate number 23672. (c)p=31,  q = 5 ,  n=307, plate number 23621. (d )p=25 ,  q =  I, n=223, origin 
shifted by g(002), plate number 23904. 

[To face p. 265 
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planes. The metal atoms occupy half the octahedral in- 
terstices, so as to give strings of edge-shared TiO6 octa- 
hedra, joined by corner-sharing. Fig. 2(a) shows an 
idealized octahedral drawing of rutile projected along 
[100]r. The idealized oxygen array is common to all 
the CS structures because the displacement vector, 
½[0]'1],, lies in the (100), plane and is exactly an oxy- 
gen-oxygen vector. It is therefore convenient to draw 
only the metal-atom positions. There are two layers 
per repeat normal to (100),. They have identical metal 
arrays and adjacent layers are displaced by ½[1]1], so 
that we need draw only one (100), metal-atom layer to 
obtain a simplified representation of the structure. This 
is compared with the octahedral drawing in Fig. 2(b). 

Drawings of such metal-atom layers intersected by 
(121), and (132), CS planes, and an (011), anti-phase 
boundary (APB) are shown in Fig. 3. Along the trace 
of the (132), CS plane (121), and (011), steps alternate. 
We call these basic structural elements C and A type 
steps [Fig. 4(a), (b)]. In three dimensions these become 
[1T1]r chains of corundum-like and a-PbO, type struc- 
tures (with edge- and face-sharing octahedra or corner- 
and edge-sharing octahedra respectively) [Fig. 4(e), 
(d)]. All three faults are contained in the [1T1], zone 
so that 

( 132),½[0] 1], = (121),½[0]" 1], + (011),½[0]" 1],. 

In general, leaving out the common vector, 

( h k I ) , = p ( 1 2 1 ) r  +q(011),.  

Along unit length of CS plane trace there are p C steps 
and q A steps. Within the CS plane there are p corun- 
dum and q a-PbOz chains per repeat. 

The production of an ordered CS structure effec- 
tively involves the elimination of p out of every 2n 
oxygen-only ( h k l ) ,  planes (see Fig. 21 of Bursill & 
Hyde, 1972). The stoichiometry is thus M,O2,_ p. Alter- 
natively the high-index structures, like the CS planes, 
may be regarded as intergrowths of (121), and (011), 
CS elements. Thus 

M,O2,_p =p  • M,102,1-1 + q.  M,202,2, 

where 

n = n i p  + nzq • 
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Fig.3. (a) Idealized octahedral diagram of the trace of a (121) 
CS plane on (100),. (b) Dot representation of (a). (c) Octa- 
hedral drawing of trace of (132), CS plane. (d) Dot represen- 
tation of (c). (e) Octahedral drawing of trace of (01 I)r anti- 
phase boundary. (f) Dot representation of (e). 
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Fig. 2. (a) Idealized rutile structure, (100), plane; z = 0 and z = ½ 
layers. (b) Dot diagram of rutile structure, showing only 
metal atoms at z = 0. 
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Fig.4. (a) C-step structural unit in (100), plane. (b) A-step struc- 
tural unit in (100), plane. (c) C-type corundum-like Illlit 
chain of edge- and face-shared octahedra. (d) A-type a-PbO2- 
like [1]1], chain of edge- and corner-shared octahedra. 
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For  instance n = 25 (253), (p = 2, q =  1) may  be resolved 
as 

2M9Ot7-t- M7014 (h i=9 ,  nz=7)  [Fig.:5(a)] 

or as 

2M10Ol9+MsO10 (n l=10 ,  n2=5)  [Fig. 5(b)], etc. 

7,1~ 17 

\ 
10,19 in 1 o 

, _  (b) 

Fig.5. Resolution of (253), CS structure into ordered inter- 
growths of (121), and (01D, shear structures. (a) M2sO48 
(253)r=2MgO17 (121)r+M7014 (011),. (b) M2sO4s (253),= 
2M~00~9 (121),+ M5010 (01D,. 
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Fig. 6. n--10 (121), CS structure. 

M a t r i x  re la t ions  b e t w e e n  unit  ce l ls  

a and b axes are chosen so that  a × b is normal  to the 
CS plane, and thus defines its orientation. A con- 
venient choice is 

a = p a ,  + q b r -  (p + q)cr ,  

b = - a, + b, - c~ . 

c is chosen in the (100), plane (i.e. in the plane of  the 
drawings);  it defines the CS plane spacing(s). 

(a) q=O. In (121)r structures all steps are C type. 
There is only one step per repeat a long the CS plane 
trace, and there are n metal a toms in each cr axis string 
of edge-shared oc tahedra .  Fig. 6 shows n =  10. The c 
axis is simply 

c =  - ½ b , + ( n  + ½ ) c , .  

(b) q=  1. Fig. 7 shows five adjacent members  of  the 
(495), family: p = 4 ,  n=41  to 45. For  n = 4 5  all strings 
contain 9 metal a toms but, as n decreases, the A steps 
on the r ight-hand CS plane move down relative to 
those on the left-hand CS plane. At  each change in n 
one addit ional  row loses a metal  a tom and the string 
lengths change from 9, 9, 9, 9, 9, in n = 45, to 8, 9, 9, 9, 
9 in n = 4 4 , . . . ,  to 8, 8, 8, 8, 8 in n = 40. Clearly strings 
are all of  the same length ( = k )  if n is a multiple of  
( p + q ) ,  but  not  otherwise, k is the smallest integer 
greater than or equal to n/(p + q) and may be written 

k ' - n / ( p + q ) +  1 - l n / ( p + q ) [ 1 .  

The parameter  r is in t roduced to simplify the ex- 
pression fo r  c. When all the  strings have the same 
length we take r = 0 ;  thus r = 0 ,  l, 2, 3, 4 and 0 for n =  
45, 44, 43, 42, 41 and 40 respectively (see Fig. 7). For  
q= 1 only, r of the strings have ( k -  1)•metal a toms and 

r = k ( p + q ) - n  . 

The c axis is now 

e = ( r - ½ ) b ,  + ( k  + ½ -  2r)e, . 

(c) q > 2.* Consider,  for example, the (8,19,11), CS 
family (p = 8, q = 3). Fig. 8 shows 99 > n > 89, r runs 
f rom 0 to 10. The number  of  strings which have ( k -  1) 
metal  a toms is n o w  [rq[ p+~, which is the smallest 
positive number  less than ( p + q )  remaining after re- 
peatedly subtracting (p + q) f rom (rq). " 

Thus 
Irq l(p +q) = k(p  + q) - n . 

F o r  example, for n = 9 1 ,  9 1 = 9 9 - 1 3 r l u ,  i.e. 13rh~=8 
and therefore 3 r = 3 0  and r =  10. 

* In the following discussion it is assumed p > q. However 
the resultant matrix applies, without modification, for q >p. In 
the latter case it is more convenient to choose the origin at a 
C rather than an A step. 
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Changing r by 1 moves all 3 A steps per repeat, and 
since n changes by 1 each t ime 1 A step moves then 
changing r by 1 changes n by 3. Fig. 8 shows that n = 99 
and 98 ( r =  0 and 4 respectively) differ by the j u m p  of 
only 1 A step, al though the e axes differ dramatically.  

In order to write down an expression for c in the 
most general case it is convenient to introduce a further 
parameter  s. We take s = 0 for q = 1 (and for q = 0) but 
take integral values 0 < s < q -  1 for q > 2, where s is 
given by 

s = l k ( p + q ) - n [ ~  . 

Thus, for 0 < r < 3  s = 0 ,  
4 < r < 7  s = l ,  
8 < r < 1 0  s = 2 .  

We may then write 

1"1=43 r = 2  n = 4 2  r=  3 

(c) (d) 
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(e) 
Fig.?. Five members of the (495), CS family: (a) n=45, r - 0 ,  

(b) n=44, r=l~ (c) n=43, r=2, (d) n=42, r=3, (e) n=41, 
r=4. 

• Three subsets of  structures may  be distinguished for 
0 < r < 10. The e axes are 

c = ( r -  ½)br + (k + ½ -  2r + s)cr. 

The resultant complete matr ix is 

Rutile 

(P- q 
M,,Ozn-p 1 1 

0 r - ½  
 +-ql ) 

k + ½ - 2 r + s  

r ,  o. n ,*, , ,  , .  9~, : , .e3 ~ .9o  

..::........::.:.':':....::-......:.:~.:: . . . .  . . : . :  .... ::....::::: 

(a) (b) (c) (d) 

( 1 )  

( 2 )  

• x ] C99 = - - z b r + 9 ~ c ~ ,  r = 0 ;  
C96 = ½b  r ÷ 7½c,, r = 1 ; 
c93 = 1½b, + 5½c~, r = 2; 
c90 = 2½b~ + 3½c~, r = 3; 

c98 = 3½b~ + 2½e~, r = 4; 
Cgs= 4½br+ ½c,, r = 5 ;  
Cgz = 5½b~- 1½c,, r = 6; 
c89 = 6½b~- 3½e~, r = 7; 

, .  9e s . g s  o. 92 7.  sp . . . . .  . . . . .  . . . . . . . .  . . . .  . . . . .  . . . . . .  . . . . . .  . . . .  
" " . ' . : : : ~ : : ' " " "  . , . . . . ~ : ~ : ~ y . ' . i l  " " " ' " ~ . ' i "  " " ' "  . . . . .  - . ~ ' "  

~222~.': ' . i : '" . : ' : ' . ' i ' : : : : : . . ' : ' ~ . .  . . . 7 "  1::~:.: .-:-: , .  

. .  :.:.::i: 2 .2 

• : : : ' -  . . . . . . .  . - . : : ' "  . : i : ' .  . . . . . .  ~ / ' . .  +- . .  - ' " t v  
. . . .  . . . . . . . .  . .  . . . . . .  • . . . . . . .  • 

( e )  ( f )  ( g )  ( h )  

(3) .c97 = 7½b,-  4½c,, r = 8 ; ,., . . . . . . . . .  
• C 9 4 =  8½br-6½cr, r = 9 ;  :.:.::::::.:.:::."=:" ..... ":::" 

Cgl = 9 ½ b , -  8 ½ c , ,  r = 1 0 .  ~ - ~ ~ ~ i  !:!i!::! ::'::" ::+ 

Decreasing r by 1 moves all the A steps on the right- 
hand  CS plane down relative to those on the left-hand 
CS plane (see Fig. 8), thus changing n by 3 (q in ....:.:!:!ii:i:: 
eral). Three (q) subsets arise because, relative to the : 
left-hand CS plane, an A step on the r ight-hand CS . . . . . . . . . .  
plane [circled in Fig. 8(a), (e), (i)] may initiate one of three ci) (/~ ,,) 
s e q u e n c e s ,  F ig .8 .  E leven  m e m b e r s  o f  the  (8, 19, 11), CS  fami ly ,  p = 8 ,  

q = 3 :  (a) n = 9 9 ,  r = 0 ,  s = 0 ,  (b) n=96, r = l ,  s = 0 ,  (c) n = 9 3 ,  
. . .  A C C C A C C C A C C A . . .  r=2,  s=0, (d) n=90, r=3,  s=0, (e) n=98, r=4,  s = l ,  

or . . .  A C C C A C C A C C C A  . . .  ( f )  n=95, r=5, s = l , ( g )  n=92, r=6, s = l , ( h )  n=89, r=7, 
s = 1, (i) n = 97, r = 8, s = 2, ( / )  n = 94, r =  9, s = 2, (k) n = 91, 

. . .  A C C A C C C A C C C A  . . . .  r= lO. s=2 .  
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where k=n/ (p+q)+ 1 - ln / (p+q)h ,  

Irq l(p . q) =k(p  + q ) - n,  

s=lk(p+q)-n lq  . 

Solving for at, br and e~ in the above matrix yields the 
inverse matrix 

Mn02.-o 
Rutile ( k - r + s  r ( q - p ) + p / 2 - q ( k + s )  p ) 

1 k + l - 2 r + s  p (k+½-2r+s)  2p+q 
~-- - ½ ( 2 r -  1) - p ( 2 r -  1)/2 p+q 

where A = (p + q)k -p /2  - rq + s(p + q). 

The relationships of this general matrix to those Used 
previously for (121)r and (132), families are given in 
the Appendix. 

Unit cells for any values ofp  q and n are readily ob- 
tained using a computer program. In individual cases 
reduced cells with shorter c axes and angles closer to 
90 ° may be obtained. Here it is better to use one gen- 
eral matrix to emphasize the overall Ielations. If  one 
family is stabilized ovex a range in composition, sep- 
arate groups of unit cells such as those used for (121)~ 
and (132)~ families may be preferred (see Appendix). 
The unit cells may easily be verified by building a 
(100)r layer using ball models. The c axes and cell 
contents may then be checked by outlining the unit 
cell with cotton thread and pins. 
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In principle, parallel intergrowths of two adjacent 
n values in the proportions Pnl+ Qn2 allows the com, 
position range xl to x2 to be traversed continuously. 
However the difference in D=u for adjacent n values of 
high-index structures is of the same order as the ac- 
curacy of measuring D=p (e.g. for p '=4 .5 ,  D=p=l.48 

Table 1. CS structure indices derived from rutile indices 
(hkl), (hkl) CS structure 
(110),* [(p+q), O, ½(2r-- 1)l 
(110),* [(p--q), --2, --½(2r-- 1)] 
(011),t [-p, O, (k-r+s)l 
(01]-)rl" [(p+2q), 2, ( ' k + 3 r - l - s ) ]  
(101)r* [-q,  -2 ,  (k+½-2r+s)] 
(10]),* [(2p+q), 0, -(k+½-2rq-s)] 

* Rutile reciprocal-lattice point falls between two CS struc- 
ture reciprocal lattice points. 

t Coincidence of rutile reciprocal-lattice point with CS 
structure (hkl) reciprocal-lattice point. 

Fig.9. Metal-atom jump required to interconvert adjacent C- 
and A-type steps. 

Some limitations of the above structural model 

It has been assumed that p and q are coprime. A (132)r 
CS plane could conceivably have p = q = N. If N =  2 the 
sequence . . .  C C A A C C A A  . . .  occurs. [Note 
that (132)r and (264)~ are parallel.] This would double 
the repeat distance along the CS plane. No evidence 
for this has been found on any of the diffraction pat- 
terns. 

For q > 2 (and assuming p > q here) a new possibility 
arises. Even forp and q coprime there will be (p + q -  1)I 
/[p!(q-1)!] possible sequences for the p C and q A 
steps per repeat distance along the CS plane. All of 
these have the same CS plane (hkl),. They may be in- 
terconverted by fixing the A step at the beginning of 
the sequence and rearranging the remaining (p + q -  1) 
steps by simple diffusive hops (Fig. 9). If identical hops 
occur in each unit cell then the unit-cell dimensions and 
stoichiometry remain unaltered. Thus, for each (n,p, q) 
set the above matrix gives one unit cell for which there 
are ( p + q -  1)I/[p!(q- 1)!] possible structures. These 
cannot be distinguished by their reciprocal-lattice geom- 
etry. Electron-diffraction intensity calculations are 
not sufficiently accurate to allow the possibilities to be 
distinguished by measuring spot intensities. The real 
structure may be a statistical assemblage of the various 
possible structures. The sharpness of the diffraction 
patterns, and the absence of diffuse scattering, suggests 
either a random mixture or else that one sequence is 
very well ordered. 

T T 

, *  , + 

+ + 
Fig. 10. Schematic drawing of a [111], zone-axis diffraction 

pattern, indicating the distances and angles measured and 
the assigned indices. 
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nm,  n =  50 a n d  51 3(D~j , )=0.03 nm)  so tha t  such para l -  
lel i n t e rg rowths  were no t  detectable  in this  s tudy.  

Indexing the diffraction patterns 

Using  a small  range  of  p, q a n d  n values [selected so 
tha t  p/q agreed wi th  the measu red  p ' ,  a n d  n agreed with  
the m e a s u r e d  D~p= (n--p/2)dhk~] a var ie ty  of  sui table  
uni t  cells were genera ted  f r o m  the  above  ma t r ix  by 

c o m p u t e r ;  a n d  the best  one selected by f i t t ing mea-  
sured a n d  ca lcula ted  d spacings a n d  i n t e rp l ana r  angles.  
(To achieve o p t i m u m  sensit ivity,  angles close to  90 ° 
were selected.) The  mos t  in tense  spots  were indexed  
by direct  t r a n s f o r m a t i o n  f rom the readi ly  ass igned 
ruffle indices o f  the [1T1]r zone  diffract ion pa t t e rns  
(c.f. Tab le  1). (These are [010] zones  for  all the  CS 
structures.)  

The  mos t  readi ly  measu red  angles are those be- 

Tab le  2. Comparison of measured and calculated data for diffraction patterns 

23177: p = 5 ,  q=2,  n=68, k=10,  r = l , s = 0 ;  a=3"260nm, b=0.7138 nm, c=2.525 nm, ct=110"74 °,fl=127.83 °, 7=90.51 °. 
23621: p=31,  q=5,  n=307, k = 9 ,  r=25,  s=3 ;  a =  17-930 nm, b=0.7138 nm, c= 15.802 nm, a=41.47 °, ,8=59-46 °, ~,= 100.52% 

Plate Angle (HKL) (001) 
number H K L (o) 

Meas. Calc. 
23177 

23621 

0 0 1 - -  
- 5  0 3 77.6 77"95 
- 5 0 2 99.2 98.53 
- 5  0 1 117.7 117"17 

7 0 - 2  71.2 70"33 
7 0 - 3  85.9 84"40 '  
7 0 - 4  100.5 99"18 

0 0 1 - -  
--31 0 -- 17, 64"6 64"23 
-31  0 - 18 84"5 84"87 
-31  0 - 19 107"0 106"87 

36 0 22 76"1 74"29 
36 0 21 95"0 93"26 
36 0 20 113-0 111"57 

d (nm) 
Meas. Calc. 
1"770 1"7756 
0"624 0"6310 
0.630 0.6381 
0.562 0..5740 
0"431 0-4339 
0.456 0.4486 
0.448 0.4549 

1.448 1-4470 
0"517 0.5121 
0-569 0.5664 
0.548 0"5442 
0"479 0"4714 
0.491 0.4889 
0.453 0.4554 

Tab le  3. Shift of dnr~ value and 
Structure parameters. 

A 
corresponding angle (HKL) (O01) for varying p', at constant Dsp 

• A 

p" p q n k r s HKL dnrL (HKL) (001) 
2"142 15 7 220 10 0 0 1"-5 0 3 0"6667 nra 91"428 ° 
2"167 13 6 190 10 0 0 ]-J 0 3 0"6649 91"642 
2"200 11 5 161 .11 3 0 T] 0 1 0.6628 91.013 
2"250 9 4 131 11 3 0 ~ 0 1 0.6595 91'232 
2"333 7 3 101 11 3 0 7 .0 1 0"6542 91"576 
2-444 22 9 314 11 3 0 22 0 1 0"6477 92.003 
2"500 5 2 71 11 3 0 5 0 2 0.6449 88"252 

/X 
Table  4. Shift of dnr, values and corresponding angles (HKL) (O01) for constant p' ( p =  17, q = 8 ) a n d v a r y i n g D s p  

Three structures are compared 

Structure (1)i n=256, D~p=l.906 nm, k = l l ,  r= lS ,  s=5 ;  
a=11"366, b=0"7138, c=9"894 nm; 
ct =40.14, fl= 50.06, ~, = 87.96% 

Structure (2): n=257, D~p=l'913 nm, k = l l ,  r=21,  s = 6 ;  
a =  11-366, b=0.7138, c= 11-883 nm; 
ct=40.29, ,8=49.23, ~,= 87.96 °. 

Structure (3): n=258, D~p=l'921 nm, k = l l ,  r=24,  s = 7 ,  
a=11"366, b=0"7138, c=13"881 nm; 
e=40"45, ,8=48.66, ~,= 87.96 °. 

A 
HKL dnrL (nm) (HKL)(O01) (o) 

(1) (2) (3) (1) (2) (3) (1) (2) (3) 
1-7 0 ~ ]-7 0 1-i" 1-7 0 /-~ 0"6676 0"6674 0-6670 87"77 87-20 8.6-64 
1-7 0 170 ]--7 0 ~ ]"7 0 ]-4 0.6379 0.6399 0-6418 107-31 106.73 106-14 
25 0 15 25 0 18 25 0 2~ 0.4244 0 - 4 2 4 1  0.4238 69 .10  68-98 68-86 
25 0 13 25 0 16 25 0 19 0.4523 0.4525 0-4527 95.43 95-19 94.94 
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tween 001 and hOl, using the h01 and h00 rows through 
011~ and 110~ (Fig. 10). The d~0z values were calculated 
using the camera constant based on d0u,, which is 
accurate to 1% (see Philp & Bursill, 1974). To enable 
sufficient angles to be measured it was in many cases 
necessary to transpose the origin by a reciprocal lattice 
vector g(00l), l_< +5. Four indexed diffraction pat- 
terns are. given in Fig. 1. A comparison of measured 
and calculated angles and d values for two patterns is 
given in Table 2. 

The small differences between structures are high- 
lighted by comparing calculated d spacings and angle 
sizes when either p' is varied at constant Dso or Dsp 
is varied at constant p'. Tables 3 and 4 exemplify this. 
More extended data than those given in Table 3 show 
that, at best, only the ends of the range 2.143_<p'< 
2.500 could be distinguished. Similarly, p '  having been 
selected, the accuracy of the D~ o values is only suffi- 
cient to determine n to about + 1% ; i.e. n can only be 
uniquely determined if it is less than about 50. 

Conclusion 

We have shown that it is possible to derive unit cells 
which give a very good fit to the observed patterns. 
However, the experimental measurements are not suf- 
ficiently accurate to allow n, p and q to be determined 
uniquely. A list of n, p and q values for the 82 measured 
patterns is given elsewhere (Philp, 1972). Having as- 
signed n, p and q we are still left with the problem 
of deducing the real sequence of C and A steps along 
the CS planes. (p + q -  1)!/[p!(q- 1)!] ordered sequencs 
are possible for each set of (p, q) values. The results 
of a high-resolution lattice-image study attempting to 
reveal C and A steps and thereby study fluctuations 
in orientation and spacing of the CS planes will be 
given elsewhere (BursiU, to be published). 
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APPENDIX 

Relation between the general matrix and those used 
previously for (121)~ and (132)r structures 

For the (121)r structures the direct matrix is 

Rutile o , )  
MnO2n_ 1 T 1 T 

0 - 5  n+5 

and the inverse matrix is 

MnO2n- 1 

1 ( n 5 .  1 ) 
Rutile ~-  (n+5) (n+5) 2 

5 5 1 

z~ ~ ] " / - - 5  • 

Allowing for the use of left-handed axes and a CS plane 
of (121)~ instead of (121)~ by Andersson & Jahnberg, 
their cells are related to those in this work in the fol- 
lowing way. 

For n odd: 

b = 0 1 0 b 
c 2 - n  1 - n  1 c 

This 2 Andersson and 
work. Jahnberg. 

For n even: 

b = 0 1 0 b 
c 2 - n  1 - n  5 c 

This 2 Andersson and 
work. Jahnberg. 

In the case of the (132), CS structures the general ma- 
trices reduce to 

Rutile 

MnO2n_ 1 T 1 
0 5 ( 2 r -  1) (k + 5 -  2r) 

and 

1 ( k - r  
k +½-2r  Rutile ~-  - 5 ( 2 r -  1) 

MnOzn- l 

5-~ 1 ) 
k + 5 - 2 r  3 

- ( 2 r -  1)/2 2 

A = 2 k - 5 - r  

where n = 2 k - r ,  i.e. r = 0, n even; r = 1, n odd. 
The cells proposed using the above matrix and those 
of BursiU & Hyde (1971) are related to follows, allow- 
ing for CS plane (132)r instead of (132)r. 

For n odd: (a) (100)(a) 
b = 0 1 0 b 
c 1 1 1 c 

This Bursill and 
work. Hyde. 

For n even: 

b = 0 T 0 b 
c ' 2 3 1 c 

This Bursill and 
work. Hyde. 
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A Method of Orienting Hexagonal Crystal Surfaces from Surface Trace Observations 
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Manual methods employing the Wulff net and stereographic projections are used to determine the 
crystallographic orientation of hexagonal crystal or grain surfaces from observations of traces of crys- 
taUographic planes. Equations are developed which enable such determinations to be carried out easily 
and precisely with computers for many kinds and combinations of traces observed. A method of this 
nature should reduce considerably the labour in the single-surface trace analysis of hexagonal crystals 
or grains. 

Introduction 

A well-known method of orienting the surface of a 
crystal or grain is to utilize traces of known crystallo- 
graphic planes on the surface such as slip lines, twin 
boundaries, edges of plate-shaped precipitates and 
etch pits, etc. Given traces on the surface of a crystal or 
grain one may proceed to orient the surface by opera- 
ting a stereographic plot containing the trace informa- 
tion, a Wulff net, and a standard stereographic plot 
in the manner described by Barrett (1952) or that de- 
scribed by Reed-Hill & Baldwin (1965). These manual 
procedures require some amount of labour and prac- 
tised skill and can be tedious if many orientation 
determinations are to be made. 

More appealing is the analytical or mathematical 
approach such as that of Tucker & Murphy (1953) for 
{100} traces on cubic crystals or those of Drazin & 
Otte (1963) and Fong (1973) developed for {111 } traces 
also for cubic crystals. The attractiveness of this type 
of approach is that in it are derived equations and 
mathematical relationships which, although complex 
for some cases, are readily programmed on a computer 
so that thereafter the business of obtaining crystal or 
grain surface orientations from trace observations be- 
comes simply a matter of feeding in trace data to the 
computer. Precise results are obtained and a multitude 
of orientation determinations may be performed ef- 
fortlessly in a short space of time. 

In this paper we will develop an analytical or 
mathematical method of deriving the orientatioo of a 
hexagonal crystal or grain surface given data on three 
trace directions on the surface all of {hOhk} or all of 
{hh2hk} and usually two other trace directions of any 
type. It is felt that such a method would be useful as it 
provides for a labour-saving computerized approach 
to the problem of orienting the surface of hexagonal 
crystals, particularly metals, using traces such as twins, 
slip lines, and basal planes revealed by polarized light. 

Preliminary considerations 

In Fig. 1 the regular hexagon A1A2AaA4AsA6, with 
centre O, represents the basal plane of a hexagonal 
crystal. The six planes of {hOhk} or of {hh2hk} are 
shown as A1A2K, A2AaK, AaA4K, A4AsK, AsA6K, and 
A6AIK. We will work in terms of a rectangular coor- 
dinate system OXYZ with axis OX parallel to OA3, 
axis O Yperpendicular to OAa, and axis OZ in the direc- 
tion of OK. Thus, in the case of {hOhk} planes OX, 0 Y, 
and OZ will be in the directions of [T2T0], [1010], and 
[0001]; in the case of {hh2hk} planes they will be parallel 
to [01T0], [2110], and [0001] respectively. We will also 
refer to crystallographic directions in terms of vectors 
referred to the OXYZ system; in the case of planes 
vectors expressing the directions of their normals will 
be used. So the six planes A1A2K, A2AaK, A3A4K, 
AaAsK, AsA6K, and A6AiK are given by 0,2/l/3,g), 


